# Joe Holbrook Memorial Invitational Competition 

8th Grade

March 19, 2023

## General Rules

- You will have $\mathbf{9 0}$ minutes to solve $\mathbf{1 6}$ questions. Your score is the number of correct answers.
- Only answers recorded on the answer sheet will be graded.
- This is an individual test. Anyone caught communicating with another student will be removed from the exam and their score will be disqualified.
- You may use the following aids:
- Pencil or other writing utensil
- Eraser
- Blank scrap paper
- You may not use the following aids:
- Other people
- Calculator or other computing device
- Compass
- Protractor
- Ruler or straightedge


## Other Notes

- Write legibly. If the graders cannot read your answer, you will be given no credit for that question.
- All answers are integers.
- You do not need to write units in your answers.
- Ties will be broken by the number of correct responses to the last 4 problems. Further ties will be broken by the number of correct responses to the previous 4 problems, etc.
- Keep in mind that the JHMIC is a difficult contest and very different from school assessments. If you even get a few questions right, you should feel proud of yourself!

1. In my drawer, I have 17 unique triplets of socks. If I randomly take socks out of my drawer, how many must I take to guarantee I have a matching triplet?
2. The number $\underline{1} \underline{2} \underline{9} \underline{1} \underline{0} \underline{4} \underline{X} \underline{X}$, where $X$ represents a single digit, is divisible by both 2 and 3 . What is the sum of all possible values of $X$ ?
3. Square $A B C D$ has side length 4 and a point $P$ inside it. What is the area of triangle $A B P$ plus the area of $C D P$ ?
4. A number is called "alternative" if its digits alternate between two distinct values such that the preceding and succeeding digit of a number are necessarily the same. As an example, 3737 is an alternative number, but 2494 and 2222 is not. How many six digit alternative numbers are divisible by 4 if numbers can begin with 0 ?
5. How many 5 letter sequences of the letters $A, B, C$, and $D$ have an even number of $A$ 's? Note that zero is an even number.
6. Call a natural number $n$ "magic" if it is a perfect square, divisible by 6 , and a multiple of 5 . How many magic numbers are there that are less than 10000 ?
7. Four circles of radius 4 are internally tangent to a circle of radius $r$, with each of the smaller circles externally tangent to two others. If $r$ is written as $a+b \sqrt{c}$ for positive integers $a, b, c$ with $c$ squarefree, then find $a+b+c$.
8. Anna, Bob, and Carol play a game where they each select a unique number from $\{1,2,3, \ldots, 10\}$. They select $a, b$, and $c$, respectively. They then ask questions about each other's numbers, to which their responses are truthful.

- Anna asks Bob, "Is your number prime?" to which Bob replies No.
- Bob asks Carol, "Is your number greater than 5?" to which Carol replies Yes.
- Carol asks Anna, "Is your number a factor of 12?" to which Anna replies Yes.

How many possible triples ( $a, b, c$ ) are there?
9. A positive integer is $k$-smooth if all of its prime divisors are less than or equal to $k$. What is the least common multiple of the 5 -smooth numbers less than 100 ?
10. Consider the set of all parallelograms that have the points $(1,2),(2,5),(-5,2)$ among its vertices. Compute the sum of the areas of all of these parallelograms.
11. Nikhil can paint a room in $x$ hours, Jaiden can paint the same room in $y$ hours, and working together, they can paint the same room in $x y$ hours (where $x$ and $y$ are real numbers). What is the maximum amount of minutes it could take them to paint the room together?
12. The integer $n$ is the smallest positive multiple of 24 such that each digit is either 2 or 3 . Compute $\frac{n}{24}$.
13. How many pairs of positive integers $(a, r)$ exist such that $a$ and $r$ divides $210^{17}$ and $\operatorname{lcm}\left(a, r^{2}\right)=\frac{a^{2}}{r}$ ?
14. How many distinct terms are there in the sequence $\left\lfloor\frac{n^{2}}{2022}\right\rfloor$ as $n$ goes from 1 to 2022 ? ( $\lfloor x\rfloor$ denotes the largest integer less than or equal to $x$. For example, $\lfloor 20.345\rfloor=20$ ).
15. There are 7 people in a circle passing one ball around. A person cannot pass the ball to someone adjacent to them, and a person cannot pass the ball to themself. How many ways can the ball be passed around so that the ball starts and ends at the same person and is passed a total of 7 times?
16. Let $A B C D$ be a trapezoid with $A B \| C D$ and $\angle A D C, \angle B C D<90^{\circ}$. If the angle bisector $\angle A D C$ intersects side $B C$ at its midpoint, $A D=5$, and $B C=7$, then the interval of possible areas for this trapezoid can be written as $(x, y]$. Given that $x$ can be expressed as $\frac{a \sqrt{b}}{c}$, where $b$ is squarefree and $a$ and $c$ are relatively prime, compute $a+b+c$.

